
An Improved Model of Configuration Complexity
Moheeb Alwarsh

Department of Computer Science, Kent State University, Kent, OHIO, USA
malwarsh@kent.edu

Abstract - Studies have been conducted on system
configurations to find metrics to calculate configuration
complexity. These studies help in quantifying the complexity,
estimating the required manpower and the related cost for
implementing these configurations. However, a problem
arises when these metrics are not precise enough to cover all
aspects of system configuration. This paper is a continuation
of work done by others [1][2]; we develop more precise
metrics for calculating configuration complexity.

Keywords: Configuration Complexity, Complexity Metrics

1 Introduction
 Companies pay tremendous attention to data centers due
to their strategic importance in the success of the companies.
Operational costs for system configuration and installation in
these centers is increasing day after day, and in some cases,
these costs exceed those of the hardware and software [5].
Researchers are working on ways to decrease the operational
costs or at least, to stabilize them from further future
increases. Studies have been implemented in this area to
reduce operational activities with self-healing benchmark or
to develop a model for configuration complexity like [7] and
[2], but the problem of determining the human costs when
planning for new development is still difficult to implement
without better tools and methodologies.

To understand the complexity of estimating the
operational costs of configuration, we first have to know the
configuration and maintenance processes used when
developing a system. A system is composed of several
components connected together to form an interface for a
particular service. As an example, to install and configure a
proxy server to provide Internet service, we need to install
and configure one or more operating systems like Linux, a
firewall, a Dynamic Name System (DNS), a Network Time
Protocol (NTP), the proxy application, Lightweight Directory
Access Protocol (LDAP) for accountability, and a load
balance application or appliance to distribute user loads on
the system. The human cost of implementing such a system
depends on how many persons are needed and for how long.
Of course, configuration complexity varies from system to
system based on the time of installation and configuration.
Some systems can be installed in few steps and a short time,
but others need a tremendous effort to be implemented. An
expert administrator can finish the job faster than a novice

administrator. There is a need to develop and implement an
algorithm that measures configuration complexity and that fits
any expertise of manpower.

This paper is a continuation of work done by others [1][2] to
quantify configuration complexity. In addition, others have
proposed a mechanism to translate the result of quantification
to a measure used to estimate the cost of manpower. This
estimation is not precise and it could produce unexpected
results. We propose improvements in the way the
configuration complexity is quantified to provide a more
precise mechanism.

The remaining parts of this paper are organized as follows.
Section two presents the Complexity Quantification method
used in [2]. Section three discusses the improved model of
quantifying Configuration Complexity. The fourth Section is
Related Work and the last will include the summary and
concluding remarks.

2 Related Work
Ad hoc configuration is the main cause of many

configuration issues, and ad hoc configuration also makes the
fixing of problems discovered late more complex. This affects
the effort in completing the configuration process and
increases the implementation time which subsequently
increases the cost [3]. Incorrect configurations cause around
90% of these problems [6]. Therefore, planning a
configuration document that includes all entered parameters is
necessary to help avoid these costs.

In [1], three distinct types in the configuration process
lifecycle are identified. The first is an initial configuration
where performance is not considered until the end of the
process. The second configuration type is when the
performance of a running system decreases, and in this case a
configuration is needed to put it back on the track. The last
type of configuration is implemented when a new
performance level is required. However, an implemented
configuration without a validation check would increase the
complexity of debugging the system. Validation needs to be
included in the configuration process lifecycle.

Configuration complexity metrics have been introduced in [2],
and they are classified into three areas. They are execution
complexity, parameter complexity and finally memory
complexity which is human memory. [2] introduces an
approach to measure the complexity; high complexity

mailto:malwarsh@kent.edu

increases the probability of getting a defected system.
Implementing a configuration which depends on measuring
the system performance at the end of the configuration
process [1] might increase the complexity of finding and
fixing errors when more debugging time is required to fix
problems, and this time may exceed the time needed to re-
configure the entire system. Others [4] have built their cost
prediction on these metrics, and this could provide a less
precise estimation because problems that might be
encountered after the configuration process are not considered
in calculating the costs. In addition, increased memory
complexity could mean an increase in human error during the
configuration process by a human operator.

We introduce an improved model that uses two configuration
complexity metrics from the [2] and one new category for
validating the configuration. Our model provides more precise
metrics to quantify the configuration complexity.

3 Complexity Quantification
In [2], the configuration complexity measure is based on

three components. These components are collected from a
manual configuration of an e-commerce solution; see Figure
1. The first component is execution complexity, and it
consists of two metrics. The first metric is the number of
actions for the configuration procedures. Borrowing an
example from [2], to configure an e-commerce system (see
Figure 1), we need to perform 59 human actions. The second
metric is the context switch metric which increments when a
user temporarily stops configuring one component and
switches to configure another component.

Figure 1. Partial Manual Configuration and Action Sequence
for Installing e-Commerce System [2]

The second component of configuration complexity is
the parameter complexity. This component consists of five
metrics.
Parameters Count: This is the total number of parameters
involved in the installation and configuration procedure.
Parameters Use Count: This is the total number of times the
parameters are used in the procedures. For example if we use
one parameter in three locations, then our Parameters Use
Count value is 3.
Parameters Cross Context: If we use a parameter in
configuring one component and use the same parameter in
configuring another component, then we have a total of 2
Parameters Cross Contexts.
Parameters Adapting Count: This is the total number of
parameters used in one form then adapted to be used in other

forms. An example is the fully-qualified path name where the
path name changes based on source location. Assume we have
a directory /a/b/c/d as the target directory. Then if a source
resides in “a” directory, the path will be “/b/c/d”. If a source
resides in “c” then the path is “/d”. The Parameters Adapting
Count in this case is 2.
Parameter Source Score: Each parameter is assigned a score
from 0 to 6 based on how difficult it is to obtain the
parameter. For example, a parameter that would be obtained
as a result of executing several commands is more difficult
than a parameter that could be entered directly like user name.

The third component is memory complexity, and it
refers to the number of parameters a human operator must
memorize or remember during configuration. The memory
complexity is based on three metrics: Memory Size, Memory
Depth and Memory Latency with the value of each being an
average. The configuration approach in [2] assumes that a
system administrator already knows how to configure an e-
commerce solution. Memory Size means the remaining
parameters which a system administrator needs to memorize
and is required to use for each step in the configuration. For
example, Figure 1 shows the process of configuration. At the
first step a system administrator will memorize the created
user and profile location. These parameters will be used later
in the configuration. In this case the memory size is 2. Storing
parameters is based on Last-In-First-Out LIFO with non-
associative lockup. Memory size, which is the size of the
stack that has all memorized parameters needed for current or
future configuration, is captured prior to each configuration
action. The Memory Depth is the process of measuring the
depth in the stack for a targeted parameter. For example, if we
have a stack of 10 parameters and the order of the required
parameter is 5; then, memory depth at this stage is 5. Memory
Latency is calculated based on the time between storing a
parameter and using it. For example, if we use “user name” in
Figure 1 at the end of the installation, then the Memory
Latency will be the total time between storing the user name
and using it. Since values are fluctuating up and down, only
the maximum and average of each metric will be calculated.
Figure 2 shows the metrics collected from the three memory
complexity components after configuring an e-commerce
solution; Figure 1.

Figure 2. Configuration Complexity Metrics measures [2]

4 Improved Model for the
Configuration Complexity

In section 2 we have demonstrated how to calculate the
configuration complexity metrics using the procedure
proposed in [2]. However, there are some concerns with the
proposed method when it comes to memory complexity and
the lack of a validation plan for configuration. We will discuss
memory complexity proposed by [2]. Then, we will introduce
our proposed validation metric and show how it could help in
reducing the debugging time and the configuration complexity
process.

4.1 Memory Complexity
Memory complexity is not applicable in all scenarios

when configuring a new or an existing system. For example,
after planning and designing a phase of a new system, a
system administrator should write down all successful steps
required to install and configure the new system. Reproducing
the same steps is necessary for automation, validation and
quality assurance. Configuring a complex system might
require several hours or days in collaboration with other
system administrators. Depending on a human operator’s
memory to install and configure a new system is very risky
and might endanger the entire process of installation and
configuration. An example is when a wrong parameter is
selected or entered without discovering it until the end of the
configuration process. Memory complexity is not a precise
metric that should be used in all configuration scenarios.
Using memory complexity with large systems would increase
the probability of human errors. There is a need to document
the necessary steps for configuring a new system or
reconfiguring an existing system to facilitate revision of the
implementation process, automation and validation.

4.2 Validation Complexity
A complex system might consist of components that

have a high degree of context switching during configuration
similar to Figure 1 or a low degree of context switching
similar to Figure 3. However, the complexity of validating the
functionality of each component increases after building the
entire system. If no testing for validation of functionality is
implemented right after completing the configuration of each
component for a complex system whenever this is possible,
then the time of debugging and verifying could increase
significantly; in fact, it might exceed the time of
configuration. An example is when debugging errors of a
node in a Rocks cluster. Reinstalling the node could be
implemented in one or two steps but debugging the errors
might take more steps. This would increase the operational
time and, therefore, would likely increase the cost.

Let V be a set of validation procedures that are not part
of system components where V = {V1, V2, V3...Vn}; let SC
be a system’s components where V ϵ SC; and let S be a

system where S = {SC1, SC2, SC3...SCm}. Then, when the
system is complete, the potential complexity of validating the
functionality of the entire system is much higher if no
incremental validation of each system component has been
implemented. For example, let us assume that we have a
procedure of three steps to validate the functionality of a
system component and we have five system components. If
we build the system without putting any stop points to check
what has been implemented, then we might end up with a
defected system that needs to be debugged in order to find the
cause of the error.

Figure 3. A semi sequential process for installing Grid on top
of a virtual cluster.

We assume each system component is implemented as a
black box that works independently. A system administrator
combines some system components to provide a working
solution. For example, a company may want to regulate
Internet access for its employees and at the same time provide
a layer of protection. To implement this solution, the company
would need a proxy application that works as software under
an operating system or in an appliance as an independent
solution. The proxy needs a Domain Name System (DNS),
firewall, a Network Time Protocol (NTP) and a Lightweight
Directory Access Protocol (LDAP) or any other user
accountability solution. Once we configure all these system
components and start the system, it might work and it might
not. For the latter case, we have to check each system
component and make sure it is working well. For example, we
can start with the DNS by issuing this command (nslookup
www.domain.com). If the DNS is not working, then maybe
the firewall is causing the issue or the proxy application
corrupted some DNS files during installation or other system
component is causing the problem. Sometimes one component
might cause the problem, and in other cases the integration of
two or more components might cause the problem. The
system components developers didn't sit together to provide a
single working solution. Instead, each one focused on

providing an independent solution that could be used with
other applications. In the proxy example, if we assume that
the operating system is functioning without any problem, then
we have five system components that need to be tested if the
system fails. If we assume that each system component needs
three steps to verify its functionality, then the total number of
validation checks is 15 for the best case and 210 for the worst
case.

If we just check the functionality of each system component,
then each one will take 3 validation checks with a total of 15.
There might be only one system component that causes all the
issues. For example we might remove the firewall and test the
system functionality. In this case we will end up with
validating the remaining four system components (DNS, NTP,
LDAP and the proxy Application) to make sure they are
working well. This scenario might be applicable to other
components, and this could produce 16 system component
validations with a total of 48 validation checks. This could
lead to do a total of 210 validation checks in the worst case by
disassembling all system components. As an example, let’s
assume that there is only one system component out of 5
which is causing a problem and affecting other components.
We will try to remove one by one and check all other
components to make sure that a certain component is causing
the problem. If we start by removing system component one
{1}, then we have to test the remaining 4 components
{2,3,4,5} to make sure they are free from error. If we found
that the problem is still there, then we will put back {1} and
remove {2}, then we will check the remaining system
components {1,3,4,5}. If no is problem found we will keep
this process until finding the one that is causing the problem.
If system component {5} is the one that is causing the
problem then it will cost 48 validation checks. What if we
don't know if a combination of more than one system
component is causing the problem? Then, we will end up
testing all possibilities and wasting a lot of time. The
calculations below show the possibility of finding the
problem. First, we test the system as whole, then we might
remove system components one by one or a combination of
more than one.

{1, 2, 3, 4, 5} : 5 * 3 = 15

{1,2,3,4}, {1,2,3,5},{1,3,4,5}, {2,3,4,5} : 16 * 3 = 48

{1,2,3}, {1,2,4},{1,2,5},{1,3,4}, {1,4,5}, {2,3,4}, {2,3,5},
{3,4,5} : 24 * 3 = 72

{1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3,5},
{4, 5} : 10 * 6 = 60

{1}, {2}, {3}, {4}, {5} : 5 * 3 = 15

Total = 210 validation check

A representation of this calculation is shown on Figure
4. The worst case occurs when we encounter an error after the
end of the configuration process and we start by testing
system components one by one, then combining system
components to figure out the combination of system
components that makes this problem.

Figure 4. Probability that one or more system components
are causing a problem. Worst case is when the problem occurs
by combining system component {1,2, 3, 4} and we start from
left of the tree to the right. In This case the worst case is 210

validation check.

We can't measure the cohesiveness in this scenario
because we don't know how a system component is designed
and what might affect this design. To reduce the total number
of validation checks, we need to implement a stop point after
assembling a system component to make sure that it is
working well and doesn't cause any problems by itself and
with the previously assembled components. If errors are found
with a newly configured system component, then a backward
validation starts building from the last SC toward the first one
to find if there is any conflict. By following this procedure, we
will reduce the number of validation check to the minimum
possible validation check. Let’s use the previous example that
we illustrated early regarding finding a defective system
component out of 5. We will start by configuring SC {1} and
implement a validation check. If no problem found, then we
will move forward to configure SC {2} and implement
validation check. We continue to add SC {3}, {4} and then
{5} where we discover the problem. In this case the total
validation is 15 compared to 48 with the previous example. If
for some reason, we found an error during the configuration
process, then we implement a backward validation check
between the newly added SC and the previous SC. In this case
we would get 15 as a best case and 54 as a worst case
compared with 210. See Figure 5.

Figure 5. Probability that one or more system components
are causing a problem. The minimum is 15 validation checks
if there is no error. The maximum is 54, and this occurs when

an error is discovered in each component which requires
backward validating check.

Validation complexity can be measured with two
metrics. The first one is the number of validation checks
needed for each system component. The second metric is the
total number of validation checks for the best case and worst
case. By combining the validation complexity metrics with the
execution and parameters metrics (See Table 1), we would get
a more precise quantitative measure of the configuration
complexity because we would be able to get more details
about the problems that we might encounter during the
configuration processes. Assuming the process of
configuration is implemented without errors is not valid [6].
This would allow us to estimate a more accurate time for the
configuration process and therefore its cost. Memory
complexity is not a realistic metric because a configuration
process for a complex system is documented for verifications,
quality assurance, and to reproduce the configuration steps.
Thus, the memory complexity is not normally applicable.
Further, consider, for example, when configuring a complex
system that has hundreds or even thousands of parameters,
then documenting all processes of configuration in a
sequential steps would reduce human errors, provide a
mechanism for other administrators to review the process and
configuration process can be shared and then implemented by
more than one system administrator. For example, let us
assume the following which admittedly is extreme. We want
to improve the performance of the US aviation system and we
have only 10 minutes to implement the new configuration. We
have 2 minutes for entering 200 parameters and 3 minutes for
restarting the system. If things go wrong, then we can roll
back by returning all old parameters in the same sequence we
replaced them and it will take 2 minutes for entering the
parameters and 3 minutes for restarting. We have a window of
10 minutes to complete our reconfiguration; otherwise, a
back-up copy of the system will be installed which will take
more than 2 hours. During these two hours, large airplanes
could not fly in the US. We can see that depending on a
system administrator’s memory for this task is not really an
option. Also, it is too risky to waste 2 hours of no fly zone

which will cost a lot of money. Memory complexity is not an
option in this scenario and the entire configuration steps need
to be documented from the start to the finish before the
implementation.

Table 1. Improved Model of Configuration Complexity

5 Concluding Remarks
We propose a new and improved incremental validation

metric for quantifying configuration complexity. This metric
is based on the number of validation checks for each
component and the total number of validation checks. Also,
we introduce an improved model to increase the precision of
the output. We removed memory complexity metrics from [2]
and add validation complexity; this improved model is based
on work done by others. We have shown that a better
approach, which requires a validation check for all
components after each configuration process to make sure all
components are working well before moving further and
configure a new component, would decrease the debugging
time and reduce the complexity of the configuration process.
This would help in providing a more precise estimate of
manpower cost. The validation metric consists of two parts.
The first part is to calculate the number of validation checks
for each system component. The second part is to calculate
the probability of best and worst case scenarios for
implementing the configuration process.

Acknowledgments
Thanks to Dr. Austin Melton for his inputs, thoughts and
valuable suggestions in this paper.

6 References
[1] Aaron B. Brown, J.L. Hellerstein. “An approach to
benchmarking configuration complexity”. In Proc. ACM
SIGOPS European Workshop 2004.

[2] Aaron B. Brown, Alexander Keller, Joseph L.
Hellerstein. “A model of configuration complexity and its
application to a change management system”. Integrated
Network Management 2005: 631-644.

[3] Afzal, Uzma. Hyder, S. I. “Configuration Complexity: A
Layered based Configuration Repository Architecture for
conflicts identification”. GJCST 2010: 66-71.

[4] Yixin Diao, Alexander Keller, Sujay S. Parekh,
Vladislav V. Marinov. “Predicting Labor Cost through IT
Management Complexity Metrics”. Integrated Network
Management 2007: 274-283.

[5] T. Eilam, M. Kalantar, A. V. Konstantinou, G. Pacifici,
J. Pershing, A. Agrawal. “Managing the configuration
complexity of distributed applications in Internet data
centers”. IEEE Communications Magazine 2006:166-177.

[6] Kalapriya Kannan, Nanjangud C. Narendra, Lakshmish
Ramaswamy. “Managing Configuration Complexity during
Deployment and Maintenance of SOA Solutions”. IEEE
International Conference on Services Computing (SCC)
2009:152-159.

[7] Aaron B. Brown, Charlie Redlin. “Measuring the
Effectiveness of Self-Healing Autonomic Systems”. ICAC
2005: 328-329.

	1 Introduction
	2 Related Work
	3 Complexity Quantification
	4 Improved Model for the Configuration Complexity
	4.1 Memory Complexity
	4.2 Validation Complexity

	5 Concluding Remarks
	Acknowledgments
	6 References

