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Abstract 

This paper presents a new range query 
mechanism to query encrypted databases that 
reside at third-party, untrusted, servers. This 
paper is a continuation of work done by others 
[1]; our scheme seeks to improve the precision of 
querying encrypted data sets, increase the 
utilization of server side processing and reduce 
the computation and memory utilization on the 
client side. We compare our algorithm with 
previous work, and quantify the performance 
improvements using numerical results. 
 
Key words: Trust, encrypted database, 
bucketization, binary search. 

1 Introduction 

Data is a vital asset for business and educational 
enterprises. In house storage and maintenance of 
such assets have an impact on the bottom line of 
enterprises [7]. Database as service (DAS) is 
marketed as an outsourcing solution that can 
reduce the total cost of ownership of these assets. 
DAS allows for the full utilization of databases 
with professional support and maintenance by 
these service providers [3]. This brings up a 
related issue: storage of sensitive data at the 
providers’ site may jeopardize the security of the 
stored information. One solution, then, is to store 
the data in encrypted form, and have clients 
download the relevant encrypted tables from the 
remote database, decrypt and do query 
processing [2]. This process expends bandwidth 
and client resources for decryption and 
intermediate storage.  
 
Researchers have proposed various solutions to 
split the work between the client and server sites, 
while addressing the privacy concerns [4], [8-9]. 
This paper is a continuation of work done by 
other researchers. We propose a new algorithm, 

Binary Query Bucketization (BQB), that seeks to 
improve the precision of querying encrypted data 
sets, increase the utilization of server side 
processing and reduce the computation and 
memory utilization on the client side. We 
evaluate the performance of our approach with 
other researchers. 
 
The paper is organized as follows. Section 2 
reviews work done by others. Section 3 
introduces our algorithm, BQB. Section 4 
addresses performance comparison with other 
algorithms. Concluding remarks appear in 
Section 5. 

2 Related Work 

One approach to querying encrypted data from 
untrusted sites is Bucketization [10]. It divides a 
column in a table into several buckets where 
each bucket has an ID and a range that defines 
the minimum and maximum values in this 
bucket.  The client holds this indexing 
information, which identifies the range of each 
of the buckets at DAS, while the actual data, in 
encrypted form, is stored at DAS (also known as 
server).  
 
We use an example to illustrate Bucketization. 
Suppose the database is about student GPA as 
shown in Table 1, and we use two buckets. 
Suppose range of Bucket 1 covers GPA <= 1, 
while bucket 2 covers the rest. For a query on 
students with GPA 2 or better, the client consults 
the local index and asks the server to send just 
bucket 2; it then decrypts the data and responds 
to the user query. However, a query for GPA < 2 
will mean downloading, and decrypting all of the 
two buckets, buckets 1 and 2. In either case, the 
client has to filter out false positives – unwanted 
data that is outside of the query range.  Thus, the 
technique may lack precision when the queried 



 

 

 

data is not on the buckets boundaries. False 
positives help measure the precision of queries 
when dealing with encrypted databases. Other 
researchers have focused on ways to reduce the 
number of false positives while maintaining the 
privacy of data.  
 
Query Optimal Bucketization (QOB) [1], is 
predicated on the assumption that queries are 
uniformly distributed. By associating a cost to 
each bucket (see below), QOB spreads the data 
over the, given M, buckets in an attempt to 
reduce the number of false positives while 
minimizing the total cost of buckets. The 
algorithm has two parts. 
 
Consider again the GPA information in Table 1. 
The first part of QOB builds a frequency table to 
house each distinct GPA value and its frequency; 
for example, an entry in the frequency table is 
(1.5, 3) since there are 3 students with GPA 1.5.  
 
QOB finds optimal bucket boundaries in a set of 
values V, V = {v1,...,vn}, using at most M 
buckets. Boundaries of QOB are identified by 
finding the minimum Bucket Cost (BC) for each 
bucket, with each bucket holding holds values in 
the range [vi,vj]. BC is defined as: 
 BC(i,j)    =   (vj – vi + 1) * ∑ ft 
where ft is the frequency of each value in the 
range. As shown in Table 2, the cost for a bucket 
that stores all GPAs between [0.7 to 1.2] is BC (5 
– 1 + 1) * 6 = 30. 
The second part builds the optimal bucket 
partitions. This is achieved by attempting all 
possible data distributions across the M buckets 
and computing cost for each distribution, and 
finally choosing the distribution that yields the 
least cost. Suppose M = 2. Then, try out all 
possible distributions between the two buckets: 
[(0,7-0.8), (0.9-3)], [(0.7-0.9), (1.0-3)], and so 
on. The cost for the first distribution is easily be 
shown to be BC (2 – 1 +1) * 2 + BC (7 - 3 + 1) * 
12 = 4 + 60 = 64. It can also be readily shown 
that the least cost distribution is given by Table 3 
(see [1] for complete details). 
 
Deviation Bucketization (DB) [5] extends QOB 
by further reducing false positives, but at the 
expense of additional buckets: while QOB uses 
M buckets, DB needs at most M2 buckets.  
Intuitively, the number of false positives will 
decline as it is inversely proportional to the 
granularity of the bucket values.  

 
DB is divided into three steps. In Step 1, the 
QOB bucket output is generated and named as 
first level buckets, and mean value for each 
bucket is also computed. Step 2 computes a 
deviation array that captures the deviation of 
each data value from the mean found in Step 1. 
In Step 3, QOB is applied again, but to the 
deviation array of Step 2 to yield new second 
level buckets. Unlike Step 1, Step 3 does not use 
the frequency information for each data value. 
An example of the second level table ranges for 
the GPA data is shown in Table 4; as   compared 
to QOB, DB needs three additional, second-
level, buckets. 
 
The second level buckets repartition each bucket 
(of DB) into at most M additional buckets based 
on how far a value in the original bucket deviates 
from the mean. Said another way, while QOB 
may hold low and high frequency data in the 
same bucket, DB tries to split them – 
recognizing that high frequency ones are more 
likely to be queried -- to permit a reduction in the 
number of false positives.  Similar to QOB, DB 
keeps  index information at the client. Additional 
details of DB may be found in [5].   

3 Binary Query Bucketization 

The advantage of DB is that the number of false 
positives decline as each bucket becomes more 
granular. But the down side is more client 
storage needs, and granular data has more 
privacy issues than less granular data.  In this 
section, we propose an improved algorithm, 
Binary Query Bucketization (BQB). 
 
Like QOB and DB, BQB stores DAS data in 
encrypted form along with the bucket ID. For 
example, EncryptionOfStudentGPAInformation 
("0.7, 2121212, John”) yields 
("sldfjkl23k4jl234jklkj23l4kj23l4kj23lk4j"), as 
shown by the DAS data in Table 5.   
 
While QOB and DB need only the first two 
attributes of this table, BQB [11] maintains an 
extra plaintext attribute, autoID for each tuple, as 
shown by the third column of Table 5.  The 
AutoID field is not related to the bucket ID; it 
can be generated either dynamically by creating 
a view that has an auto number combined with 
the encrypted table, or by adding the auto 
number with the encrypted table when uploading 
the encrypted data. AutoID is just a 
monotonically increasing number assigned with 



 

 

 

each tuple and has no relation to the actual data 
contained in that tuple.  The client side index is 
the same as that of QOB. We also note that BQB 
employs M buckets, and adopts the same 
strategy as QOB in determining the bucket 
distribution. Now, we are ready to discuss the 
details of BQB. 
 
Our algorithm, shown in Figure 1, attempts to 
reduce the number of false positives by doing a 
binary search on the encrypted data housed at 
DAS. Suppose the user’s query range is < V, i.e. 
the query retrieves GPA values < V. Using the 
client index, the algorithm starts by identifying 
the buckets that are needed to answer the query. 
It then constructs a query for the server to fetch 
two quantities: the min and max AutoID among 
all of these buckets. For example, if the buckets 
of interest are the first four buckets, the min will 
be the AutoID of the first tuple of the first bucket 
while max will be the AutoID  of the last tuple of 
the fourth bucket. While QOB and DB would 
have retrieved and decrypted all of the tuples in 
all of these buckets, BQB retrieves much less, as 
shown below; for now, it retrieves just these two 
AutoIDs. For convenience, let us call these two 
AutoIDs as x and y.  
 
This sets in motion a binary search algorithm to 
focus on the region (x, y).  The client then asks 
the server for the encrypted tuple at the midpoint 
of x and y, i.e. tuple z, z = (x + y) / 2. The client 
decrypts tuple z, and extracts the data value 
(GPA), say zv, for this tuple. If zv, > V, then, our 
new region of interest is (x, z) else our region of 
interest is (z, y). The binary search continues, in 
a similar fashion, in this new region. Eventually, 
the binary search terminates when the region is 
null. At that point, we would have obtained the 
AutoID, say qid, corresponding to the original 
GPA query value V.    
 
Armed with qid, we make one final query to the 
server to retrieve all tuples with AutoIDs 
between 1 and qid.  With this, the query is 
complete, i.e. the query to retrieve GPA values < 
V corresponds to the decryption of these tuples 
whose AutoIDs lie between 1 and qid.    
 
The number of steps needed to complete the 
binary search is easily shown to be bounded 
above by Log r, where r = y - x.  

4 Performance Results 

The dataset we used in this experiment is similar 
to the one in [1] and [5]; it contains more than 5 
x 105 tuples (576,097 to be exact, for a total of 35 
Mb of non-encrypted data) taken from “Forest 
CoverType” Archive database [6] with the actual 
data values ranging from 1 to 360. We ran the 
three algorithms with 50 different values for M, 
the number of buckets, varying  M from 4 to 54. 
Each run was repeated for 1000 queries.  
We stored the DAS data in encrypted form, but 
for brevity we discuss the results for non-
encrypted DAS storage. At the end of the 
section, we remark on the performance for 
encrypted DAS storage. 
We measured three quantities to characterize the 
performance of the three algorithms:  

• number of false positives;  

• size of superset – total number of tuples 
returned to the client. It includes data 
within the query range, and false 
positives or data outside of the query 
range; and 

• turnaround time – elapsed time, from 
start to finish. 

The number of false hits for the three algorithms 
is depicted in Figure 2. Note that for M = 4, this 
number is about sixty-eight thousand for QOB, 
and around sixteen thousand for DB. With BQB, 
the number of false hits is no more than 20. The 
large number of hits for the former two 
algorithms may be attributed to their inability to 
retrieve single tuples. 
 
Figure 3 represents the size of the superset, the 
volume of the number of tuples retrieved for 
each of the three schemes. As seen in Figure 3, 
the size of superset for QOB, DB and BQB are 
358,403, 306,430, and 289,710 respectively, for 
M = 4. Note that the superset counts the total 
number of tuples retrieved from DAS, those that 
don’t match the user’s query – false positives - 
and those that do. Relating Figure 3 to Figure 2 
can provide insight into error rate – the percent 
of records that don’t match user’s query; for 
example, error rates for QOB and DB are 20% 
and 5% (70,000 / 358,000 = 20%; 16738 / 
306430 = 5%), while for BQB the error rate is 
close to 0 (18 / 289710), all for M = 4.  

As noted in [1], DB performs better than QOB 
since it employs more buckets with finer 
partitioning. Consider the case where data values 
are whole numbers in the range 1 to 360. The 
maximum number of buckets that can be 



 

 

 

produced in this range is 360/2 or 180 buckets. 
Thus, when 13 buckets are used by QOB, DB 
would employ up to 169 (= 132) buckets, and DB 
would reach the maximum number of 180 
buckets when QOB’s bucket use goes up by one 
more. However, privacy may be a concern for 
DB since the data range is much smaller, and 
there is not much that separates the buckets or 
the values inside of these buckets. For example 
the bucket partitioning looks like [1~2], [3~4], 
[5~6], and so on. Of course, BQB does not 
exhibit this problem. 

Figure 4 compares the mean turnaround time for 
various bucket sizes. For smaller bucket sizes --  
4 through 12 – we deployed a sequential version 
of the three algorithms, and a parallel -- or 
multiple process -- version for larger bucket 
sizes. As shown in Figure 4, BQB has a slower 
turnaround than either of DB or BQB; for M = 4, 
the QOB, DB and BQB turnaround times are 1, 1 
and 3 seconds, and for M=20, these values are 
43, 76 and 93 seconds. Slower turnaround time 
of BQB can be attributed to the network delay 
experienced during the binary search process 
when BQB retrieves single tuples. 

Figure 5 shows the size of the returned false hits 
in mega bits; while this information can also be 
extrapolated from Figure 2, it nevertheless 
provides an easy handle on the bandwidth 
consumption for the three algorithms.  

Encrypted DAS 

For brevity, we did not show the performance 
results when DAS data is stored in encrypted 
form. Decryption is quite time 
consuming/expensive, and is an added penalty 
for all of the three schemes. Since the other two 
schemes have to do lot more decryption than 
BQB (see Figure 2, for the number of false hits), 
they take many hours to complete the decryption 
process for large datasets, such as the one noted 

in the beginning of this Section.  So, we use a 
smaller, but encrypted data set to illustrate this 
point, see Figure 6 for an example. As one would 
expect, BQB terminates much earlier than the 
other two algorithms. 

Recall that the number of false positives with 
BQB is bounded above by Log r, where r equals 
the range of the user’s query. Thus, the overall 
performance of BQB with encrypted storage at 
DAS should be significantly better than that of 
the other two algorithms.  In fact, when 
decryption is factored in, the small penalty due to 
multiple client requests - as experienced by 
BQB’s binary search - is more than offset by the 
gain in significantly fewer decryptions that are 
needed for the proposed algorithm.   

5 Concluding Remarks 

In this paper we proposed a new algorithm for 
querying encrypted data that is stored at 
untrusted servers. Our approach is a variant of a 
scheme used by others. The novelty of our 
scheme is that it employs a, new, binary search 
step to precisely determine the range of the 
actual data that is relevant to the user’s query. 
During the binary search process we decrypt one 
tuple at a time instead of doing bulk decryption 
of, often unwanted data – as is common with 
other approaches – and discarding it later.  

Following the binary search, BQB retrieves the 
relevant data in bulk and decrypts it. Since all of 
this data correspond to the user’s query, no false 
positives are generated following the binary 
search process. This results in a significant 
reduction both in data transmission, and the 
number of decryptions at the client. However, 
the number of client-server interactions, while 
bounded above by Log r, is a bit higher with the 
proposed scheme as compared to the other two 
schemes. 

 
  



 

 

 

 

Table 1: GPA Data 

GPA SSN Name 

0.7 
0.8 
0.9 
1.0 
1.0 
1.2 
1.5 
1.5 
1.5 
3.0 
3.0 
3.0 
3.0 
3.0 

2121212 
6545545 
5121123 
5482123 
2384865 
5315422 
6689555 
5165888 
9954521 
5458862 
7148787 
2342336 
3334445 
2222234 

john 
mike 
rob 
tom 
steve 
ali 
ahmed 
adam 
cres 
cris 
rob 
mike 
rich 
amanda

 

Figure 1: Binary Query Bucketization – Binary 
Search 

Algorithm BQB (V) 
Input: Required value to search for 
Output: Query result with zero false positive. 
Select all buckets from QOB table  > or < V 
Construct select statement to retrieve (Max, Min) AutoID 
and their encrypted records 
if (returned set != user query) 
  Mid = Min + ((Max-Min)/2) 
  Query=“Select Etuple From ETable Where AutoID= Mid” 

  Decrypt = Decrypt (Query) → extract V 
  While (Max > Min) 
     If (Decrypt > V) 
          Max = Mid - 1 
     else 
          Min = Mid + 1 
     Mid = Min + ((Max-Min)/2) 
     Query=“Select Etuple From Etable Where AutoID= Mid” 
     Decrypt = Decrypt (Query) → extract V 
  End While 

end if 
Return: Select eTuple From Etable Where AutoID  
                                                                           > or < Mid 

BC (5 – 1 + 1) * 6

1
2
3
4
5

6
7

GPA Frequency

0.7
0.8
0.9
1.0
1.2

1.5
3.0

1
1
1
2
1

3
5

5 records             Total = 6

  
Table 2: Computation of BC [1] 

 

Table 4: Second Level Bucketization 

 

 
Table 5: DAS Encrypted Table 

Partition BID 

[0.7 ~ 0.8] 
[0.9 ~ 1.0] 
[1.2 ~ 3.0] 

Bucket_1_1 
Bucket_1_2 
Bucket_2_1 

 
 Table 3:  QOB Bucketization (M = 2) – Index 
Information 

             GPA ID 

[0.7 ~ 1.0] 
[1.2 ~ 3.0] 

Bucket_1 
Bucket_2 



 

 

 

Figure 2:  False Positives 

 
Figure 5: Bandwidth Usage 

Figure 3: Number of Tuples Processed by the 
Client 

Figure 6: Performance on Encrypted Data - Mean 
Turnaround Time. 

 
Figure 4: Process Turnaround Times 
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