

On Querying Encrypted Databases

 Moheeb Alwarsh and Ray Kresman

 Department of Computer Science
 Bowling Green State University
 Bowling Green, OH 43403
 {moheeba, kresman}@bgsu.edu

Abstract

This paper presents a new range query
mechanism to query encrypted databases that
reside at third-party, untrusted, servers. This
paper is a continuation of work done by others
[1]; our scheme seeks to improve the precision of
querying encrypted data sets, increase the
utilization of server side processing and reduce
the computation and memory utilization on the
client side. We compare our algorithm with
previous work, and quantify the performance
improvements using numerical results.

Key words: Trust, encrypted database,
bucketization, binary search.

1 Introduction

Data is a vital asset for business and educational
enterprises. In house storage and maintenance of
such assets have an impact on the bottom line of
enterprises [7]. Database as service (DAS) is
marketed as an outsourcing solution that can
reduce the total cost of ownership of these assets.
DAS allows for the full utilization of databases
with professional support and maintenance by
these service providers [3]. This brings up a
related issue: storage of sensitive data at the
providers’ site may jeopardize the security of the
stored information. One solution, then, is to store
the data in encrypted form, and have clients
download the relevant encrypted tables from the
remote database, decrypt and do query
processing [2]. This process expends bandwidth
and client resources for decryption and
intermediate storage.

Researchers have proposed various solutions to
split the work between the client and server sites,
while addressing the privacy concerns [4], [8-9].
This paper is a continuation of work done by
other researchers. We propose a new algorithm,

Binary Query Bucketization (BQB), that seeks to
improve the precision of querying encrypted data
sets, increase the utilization of server side
processing and reduce the computation and
memory utilization on the client side. We
evaluate the performance of our approach with
other researchers.

The paper is organized as follows. Section 2
reviews work done by others. Section 3
introduces our algorithm, BQB. Section 4
addresses performance comparison with other
algorithms. Concluding remarks appear in
Section 5.

2 Related Work

One approach to querying encrypted data from
untrusted sites is Bucketization [10]. It divides a
column in a table into several buckets where
each bucket has an ID and a range that defines
the minimum and maximum values in this
bucket. The client holds this indexing
information, which identifies the range of each
of the buckets at DAS, while the actual data, in
encrypted form, is stored at DAS (also known as
server).

We use an example to illustrate Bucketization.
Suppose the database is about student GPA as
shown in Table 1, and we use two buckets.
Suppose range of Bucket 1 covers GPA <= 1,
while bucket 2 covers the rest. For a query on
students with GPA 2 or better, the client consults
the local index and asks the server to send just
bucket 2; it then decrypts the data and responds
to the user query. However, a query for GPA < 2
will mean downloading, and decrypting all of the
two buckets, buckets 1 and 2. In either case, the
client has to filter out false positives – unwanted
data that is outside of the query range. Thus, the
technique may lack precision when the queried

data is not on the buckets boundaries. False
positives help measure the precision of queries
when dealing with encrypted databases. Other
researchers have focused on ways to reduce the
number of false positives while maintaining the
privacy of data.

Query Optimal Bucketization (QOB) [1], is
predicated on the assumption that queries are
uniformly distributed. By associating a cost to
each bucket (see below), QOB spreads the data
over the, given M, buckets in an attempt to
reduce the number of false positives while
minimizing the total cost of buckets. The
algorithm has two parts.

Consider again the GPA information in Table 1.
The first part of QOB builds a frequency table to
house each distinct GPA value and its frequency;
for example, an entry in the frequency table is
(1.5, 3) since there are 3 students with GPA 1.5.

QOB finds optimal bucket boundaries in a set of
values V, V = {v1,...,vn}, using at most M
buckets. Boundaries of QOB are identified by
finding the minimum Bucket Cost (BC) for each
bucket, with each bucket holding holds values in
the range [vi,vj]. BC is defined as:
 BC(i,j) = (vj – vi + 1) * ∑ ft
where ft is the frequency of each value in the
range. As shown in Table 2, the cost for a bucket
that stores all GPAs between [0.7 to 1.2] is BC (5
– 1 + 1) * 6 = 30.
The second part builds the optimal bucket
partitions. This is achieved by attempting all
possible data distributions across the M buckets
and computing cost for each distribution, and
finally choosing the distribution that yields the
least cost. Suppose M = 2. Then, try out all
possible distributions between the two buckets:
[(0,7-0.8), (0.9-3)], [(0.7-0.9), (1.0-3)], and so
on. The cost for the first distribution is easily be
shown to be BC (2 – 1 +1) * 2 + BC (7 - 3 + 1) *
12 = 4 + 60 = 64. It can also be readily shown
that the least cost distribution is given by Table 3
(see [1] for complete details).

Deviation Bucketization (DB) [5] extends QOB
by further reducing false positives, but at the
expense of additional buckets: while QOB uses
M buckets, DB needs at most M2 buckets.
Intuitively, the number of false positives will
decline as it is inversely proportional to the
granularity of the bucket values.

DB is divided into three steps. In Step 1, the
QOB bucket output is generated and named as
first level buckets, and mean value for each
bucket is also computed. Step 2 computes a
deviation array that captures the deviation of
each data value from the mean found in Step 1.
In Step 3, QOB is applied again, but to the
deviation array of Step 2 to yield new second
level buckets. Unlike Step 1, Step 3 does not use
the frequency information for each data value.
An example of the second level table ranges for
the GPA data is shown in Table 4; as compared
to QOB, DB needs three additional, second-
level, buckets.

The second level buckets repartition each bucket
(of DB) into at most M additional buckets based
on how far a value in the original bucket deviates
from the mean. Said another way, while QOB
may hold low and high frequency data in the
same bucket, DB tries to split them –
recognizing that high frequency ones are more
likely to be queried -- to permit a reduction in the
number of false positives. Similar to QOB, DB
keeps index information at the client. Additional
details of DB may be found in [5].

3 Binary Query Bucketization

The advantage of DB is that the number of false
positives decline as each bucket becomes more
granular. But the down side is more client
storage needs, and granular data has more
privacy issues than less granular data. In this
section, we propose an improved algorithm,
Binary Query Bucketization (BQB).

Like QOB and DB, BQB stores DAS data in
encrypted form along with the bucket ID. For
example, EncryptionOfStudentGPAInformation
("0.7, 2121212, John”) yields
("sldfjkl23k4jl234jklkj23l4kj23l4kj23lk4j"), as
shown by the DAS data in Table 5.

While QOB and DB need only the first two
attributes of this table, BQB [11] maintains an
extra plaintext attribute, autoID for each tuple, as
shown by the third column of Table 5. The
AutoID field is not related to the bucket ID; it
can be generated either dynamically by creating
a view that has an auto number combined with
the encrypted table, or by adding the auto
number with the encrypted table when uploading
the encrypted data. AutoID is just a
monotonically increasing number assigned with

each tuple and has no relation to the actual data
contained in that tuple. The client side index is
the same as that of QOB. We also note that BQB
employs M buckets, and adopts the same
strategy as QOB in determining the bucket
distribution. Now, we are ready to discuss the
details of BQB.

Our algorithm, shown in Figure 1, attempts to
reduce the number of false positives by doing a
binary search on the encrypted data housed at
DAS. Suppose the user’s query range is < V, i.e.
the query retrieves GPA values < V. Using the
client index, the algorithm starts by identifying
the buckets that are needed to answer the query.
It then constructs a query for the server to fetch
two quantities: the min and max AutoID among
all of these buckets. For example, if the buckets
of interest are the first four buckets, the min will
be the AutoID of the first tuple of the first bucket
while max will be the AutoID of the last tuple of
the fourth bucket. While QOB and DB would
have retrieved and decrypted all of the tuples in
all of these buckets, BQB retrieves much less, as
shown below; for now, it retrieves just these two
AutoIDs. For convenience, let us call these two
AutoIDs as x and y.

This sets in motion a binary search algorithm to
focus on the region (x, y). The client then asks
the server for the encrypted tuple at the midpoint
of x and y, i.e. tuple z, z = (x + y) / 2. The client
decrypts tuple z, and extracts the data value
(GPA), say zv, for this tuple. If zv, > V, then, our
new region of interest is (x, z) else our region of
interest is (z, y). The binary search continues, in
a similar fashion, in this new region. Eventually,
the binary search terminates when the region is
null. At that point, we would have obtained the
AutoID, say qid, corresponding to the original
GPA query value V.

Armed with qid, we make one final query to the
server to retrieve all tuples with AutoIDs
between 1 and qid. With this, the query is
complete, i.e. the query to retrieve GPA values <
V corresponds to the decryption of these tuples
whose AutoIDs lie between 1 and qid.

The number of steps needed to complete the
binary search is easily shown to be bounded
above by Log r, where r = y - x.

4 Performance Results

The dataset we used in this experiment is similar
to the one in [1] and [5]; it contains more than 5
x 105 tuples (576,097 to be exact, for a total of 35
Mb of non-encrypted data) taken from “Forest
CoverType” Archive database [6] with the actual
data values ranging from 1 to 360. We ran the
three algorithms with 50 different values for M,
the number of buckets, varying M from 4 to 54.
Each run was repeated for 1000 queries.
We stored the DAS data in encrypted form, but
for brevity we discuss the results for non-
encrypted DAS storage. At the end of the
section, we remark on the performance for
encrypted DAS storage.
We measured three quantities to characterize the
performance of the three algorithms:

• number of false positives;

• size of superset – total number of tuples
returned to the client. It includes data
within the query range, and false
positives or data outside of the query
range; and

• turnaround time – elapsed time, from
start to finish.

The number of false hits for the three algorithms
is depicted in Figure 2. Note that for M = 4, this
number is about sixty-eight thousand for QOB,
and around sixteen thousand for DB. With BQB,
the number of false hits is no more than 20. The
large number of hits for the former two
algorithms may be attributed to their inability to
retrieve single tuples.

Figure 3 represents the size of the superset, the
volume of the number of tuples retrieved for
each of the three schemes. As seen in Figure 3,
the size of superset for QOB, DB and BQB are
358,403, 306,430, and 289,710 respectively, for
M = 4. Note that the superset counts the total
number of tuples retrieved from DAS, those that
don’t match the user’s query – false positives -
and those that do. Relating Figure 3 to Figure 2
can provide insight into error rate – the percent
of records that don’t match user’s query; for
example, error rates for QOB and DB are 20%
and 5% (70,000 / 358,000 = 20%; 16738 /
306430 = 5%), while for BQB the error rate is
close to 0 (18 / 289710), all for M = 4.

As noted in [1], DB performs better than QOB
since it employs more buckets with finer
partitioning. Consider the case where data values
are whole numbers in the range 1 to 360. The
maximum number of buckets that can be

produced in this range is 360/2 or 180 buckets.
Thus, when 13 buckets are used by QOB, DB
would employ up to 169 (= 132) buckets, and DB
would reach the maximum number of 180
buckets when QOB’s bucket use goes up by one
more. However, privacy may be a concern for
DB since the data range is much smaller, and
there is not much that separates the buckets or
the values inside of these buckets. For example
the bucket partitioning looks like [1~2], [3~4],
[5~6], and so on. Of course, BQB does not
exhibit this problem.

Figure 4 compares the mean turnaround time for
various bucket sizes. For smaller bucket sizes --
4 through 12 – we deployed a sequential version
of the three algorithms, and a parallel -- or
multiple process -- version for larger bucket
sizes. As shown in Figure 4, BQB has a slower
turnaround than either of DB or BQB; for M = 4,
the QOB, DB and BQB turnaround times are 1, 1
and 3 seconds, and for M=20, these values are
43, 76 and 93 seconds. Slower turnaround time
of BQB can be attributed to the network delay
experienced during the binary search process
when BQB retrieves single tuples.

Figure 5 shows the size of the returned false hits
in mega bits; while this information can also be
extrapolated from Figure 2, it nevertheless
provides an easy handle on the bandwidth
consumption for the three algorithms.

Encrypted DAS

For brevity, we did not show the performance
results when DAS data is stored in encrypted
form. Decryption is quite time
consuming/expensive, and is an added penalty
for all of the three schemes. Since the other two
schemes have to do lot more decryption than
BQB (see Figure 2, for the number of false hits),
they take many hours to complete the decryption
process for large datasets, such as the one noted

in the beginning of this Section. So, we use a
smaller, but encrypted data set to illustrate this
point, see Figure 6 for an example. As one would
expect, BQB terminates much earlier than the
other two algorithms.

Recall that the number of false positives with
BQB is bounded above by Log r, where r equals
the range of the user’s query. Thus, the overall
performance of BQB with encrypted storage at
DAS should be significantly better than that of
the other two algorithms. In fact, when
decryption is factored in, the small penalty due to
multiple client requests - as experienced by
BQB’s binary search - is more than offset by the
gain in significantly fewer decryptions that are
needed for the proposed algorithm.

5 Concluding Remarks

In this paper we proposed a new algorithm for
querying encrypted data that is stored at
untrusted servers. Our approach is a variant of a
scheme used by others. The novelty of our
scheme is that it employs a, new, binary search
step to precisely determine the range of the
actual data that is relevant to the user’s query.
During the binary search process we decrypt one
tuple at a time instead of doing bulk decryption
of, often unwanted data – as is common with
other approaches – and discarding it later.

Following the binary search, BQB retrieves the
relevant data in bulk and decrypts it. Since all of
this data correspond to the user’s query, no false
positives are generated following the binary
search process. This results in a significant
reduction both in data transmission, and the
number of decryptions at the client. However,
the number of client-server interactions, while
bounded above by Log r, is a bit higher with the
proposed scheme as compared to the other two
schemes.

Table 1: GPA Data

GPA SSN Name

0.7
0.8
0.9
1.0
1.0
1.2
1.5
1.5
1.5
3.0
3.0
3.0
3.0
3.0

2121212
6545545
5121123
5482123
2384865
5315422
6689555
5165888
9954521
5458862
7148787
2342336
3334445
2222234

john
mike
rob
tom
steve
ali
ahmed
adam
cres
cris
rob
mike
rich
amanda

Figure 1: Binary Query Bucketization – Binary
Search

Algorithm BQB (V)
Input: Required value to search for
Output: Query result with zero false positive.
Select all buckets from QOB table > or < V
Construct select statement to retrieve (Max, Min) AutoID
and their encrypted records
if (returned set != user query)
 Mid = Min + ((Max-Min)/2)
 Query=“Select Etuple From ETable Where AutoID= Mid”

 Decrypt = Decrypt (Query) → extract V
 While (Max > Min)
 If (Decrypt > V)
 Max = Mid - 1
 else
 Min = Mid + 1
 Mid = Min + ((Max-Min)/2)
 Query=“Select Etuple From Etable Where AutoID= Mid”
 Decrypt = Decrypt (Query) → extract V
 End While

end if
Return: Select eTuple From Etable Where AutoID
 > or < Mid

BC (5 – 1 + 1) * 6

1
2
3
4
5

6
7

GPA Frequency

0.7
0.8
0.9
1.0
1.2

1.5
3.0

1
1
1
2
1

3
5

5 records Total = 6

Table 2: Computation of BC [1]

Table 4: Second Level Bucketization

Table 5: DAS Encrypted Table

Partition BID

[0.7 ~ 0.8]
[0.9 ~ 1.0]
[1.2 ~ 3.0]

Bucket_1_1
Bucket_1_2
Bucket_2_1

 Table 3: QOB Bucketization (M = 2) – Index
Information

 GPA ID

[0.7 ~ 1.0]
[1.2 ~ 3.0]

Bucket_1
Bucket_2

Figure 2: False Positives

Figure 5: Bandwidth Usage

Figure 3: Number of Tuples Processed by the
Client

Figure 6: Performance on Encrypted Data - Mean
Turnaround Time.

Figure 4: Process Turnaround Times

0 10 20 30 40 50 60
0

10000

20000

30000

40000

50000

60000

70000

80000

Returned False Hits

QOB
DB
BQB

Number of Buckets , M

N
um

be
r o

f r
et

ur
ne

d
fa

ls
e

hi
ts

0 10 20 30 40 50 60
0.000000

5.000000

10.000000

15.000000

20.000000

25.000000

30.000000

35.000000

Size of Returned Flase Hits in Mbit

QOB
DB
BQB

Number of Buckets

S
iz

e
in

 M
eg

a
B

it

0 10 20 30 40 50 60
250000

270000

290000

310000

330000

350000

370000

Average Size of Superset

QOB
DB
BQB

Number of Buckets

N
um

be
r o

f R
ec

or
ds

QOB DB BQB
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Average Execution Time

Ti
m

e
in

 S
ec

.

0 10 20 30 40 50 60
0

20

40

60

80

100

120

Total Execution Time Without Decryption

QOB
DB
BQB

Number of Buckets

Ti
m

e
in

 s
ec

on
ds

Reference

1. Hore, B., Mehrotra, S., Tsudik, G.: A Privacy-
Preserving Index for Range Queries. In:
International Conference on Very Large Data
Bases, pp. 720–731, 2004.

2. Agrawal, R., Kiernan, J., Srikant, R., and Xu,
Y.: Order Preserving Encryption For Numeric
Data. In: Book Order preserving encryption for
numeric data, Series Order preserving encryption
for numeric data, ed., Editor ed.^eds., pp. 563-
574, ACM, 2004.

3. Hacigumus, H., Iyer, B., and Mehrotra, S.:
Providing Database as a Service. In: IEEE
International Conference on Data Engineering
(ICDE), San Jose , California , 2002.

4. Mykletun, E., Tsudik, G.: Incorporating a
Secure Coprocessor in the Database-as a-Service
Model. In: International Workshop on Innovative
Architecture for Future Generation High
Performance Processors and Systems, 2005.

5. Yvonne Y., and Huiping G.: An Improved
Indexing Scheme for Range Queries. In:
International Conference on Security and
Management(SAM'08)", Las Vegas, 2008.

6. The UCI KDD Archive. Forest CoverType
Database
<http://kdd.ics.uci.edu/databases/covertype/cove
rtype.html>

7. Ozcelik, Y., Altinkemer, K. : Impacts of
Information Technology (IT) Outsourcing on
Organizational Performance: A Firm-Level
Empirical Analysis. In: 17th European
Conference on Information System, 2009.

8. Haber, S., Horne, W., Sander, T., Yao, D.:
Privacy-Preserving Verification of Aggregate
Queries on Outsourced Databases. In: Technical
Report HPL-2006-128, HP Labs, 2006.

9. Damiani, E., Vimercati, S., Jajodia, S,
Paraboschi, S., Samarati, P.: Balancing
Confidentiality and Efficiency in Untrusted
Relational DBMSs. In: Proc. 10th ACM Conf.
On Computer and Communications Security,
Washington, DC, pp. 93-102, 2003.

10. Hacigümüs, H., Iyer, B., Li, C., Mehrotra, S.:
Executing SQL Over Encrypted Data in the
Database-Service-Provider Model. In: SIGMOD
Conference, pp. 216-227, 2002.

11. Alwarsh, M.: An Improved Algorithm for
Querying Encrypted Database. Bowling Green
State University, Master’s project, 2010.

